A quadrature formula associated with a univariate quadratic spline quasi-interpolant

نویسنده

  • Paul Sablonnière
چکیده

We study a new simple quadrature rule based on integrating a C1 quadratic spline quasi-interpolant on a bounded interval. We give nodes and weights for uniform and non-uniform partitions. We also give error estimates for smooth functions and we compare this formula with Simpson’s rule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-spectral Derivative of Quadratic Quasi-interpolant Splines

Abstract. In this paper we propose a local spline method for the approximation of the derivative of a function f . It is based on an optimal spline quasi-interpolant operator Q2, introduced in [12]. Differentiating Q2 f , we construct the pseudo-spectral derivative at the quasi-interpolation knots and the corresponding differentiation matrix. An error analysis is proposed. Some numerical result...

متن کامل

Approximating partial derivatives of first and second order by quadratic spline quasi-interpolants on uniform meshes

Given a bivariate function f defined in a rectangular domain Ω, we approximate it by a C1 quadratic spline quasi-interpolant (QI) and we take partial derivatives of this QI as approximations to those of f. We give error estimates and asymptotic expansions for these approximations. We also propose a simple algorithm for the determination of stationary points, illustrated by a numerical example. ...

متن کامل

Effortless construction of hierarchical spline quasi-interpolants

Quasi-interpolation is a well-known technique to construct accurate approximants to a given set of data or a given function by means of a local approach. A quasi-interpolant is usually obtained as a linear combination of a given system of blending functions that form a convex partition of unity and possess a small local support. These properties ensure both numerical stability and local control...

متن کامل

GC- Quadratic Trigonometric Spline Preserving the Shape of Monotonic Data

Abstract— This paper describes the use of GC quadratic trigonometric spline interpolant for preserving the shape of monotonic data. Simple data dependent constraints are derived for shape parameters to preserve the monotonicity through monotonic data. The necessary and sufficient conditions for the monotonicity of the trigonometric quadratic interpolant have been derived. The scheme is computat...

متن کامل

Gauss-Green cubature over spline curvilinear polygons

We have implemented in Matlab a Gauss-like cubature formula over bivariate domains with a piecewise regular boundary, which is tracked by splines of maximum degree p (spline curvilinear polygons). The formula is exact for polynomials of degree at most 2n− 1 using N ∼ cmn nodes, 1 ≤ c ≤ p, m being the total number of points given on the boundary. It does not need any decomposition of the domain,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005